Surface alloying of immiscible metals induced by surface state shift
نویسندگان
چکیده
By using first principles calculations, it is found that the noble metal atoms Ag, Au and Cu would like to occupy the vacancy sites of the W(0 0 1) or Mo(0 0 1) surface to form the substitutional surface alloys, despite the fact that they do not like to form alloy in the bulk. The electronic local function (ELF) for these substitutional surface alloys shows that there is no obvious chemical bonding between the noble metals and W or Mo. The analysis of electronic structures lets us conclude that the surface alloying of immiscible metals may originate from the surface state shift of W (or Mo) induced by changes of the electronic environment of surface W (or Mo) when surface W (or Mo) atoms are alternatively replaced by Ag (Au or Cu). 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Electro-Synthesis of Cu-Nb Nanocomposites; Toward Novel Alloying of Immiscible Bimetals
Immiscible metals due to their inherent specs are insoluble over the steady state. Developing an innovative approach to this issue would be fascinating and challenge the overriding rules. Herein, we proffer the principles of synthesis of Cu-Nb nanocomposites using electrochemical deoxidation route. This method consists of the cathodic electrolysis of the nanoparticles Cu-Nb2O5 through the...
متن کاملDiffusion and surface alloying of gradient nanostructured metals
Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface ...
متن کاملStructural Transformation of Immiscible Metals Induced by Mechanical Alloying
X-ray absorption fine structure(XAFS) is used to investigate the local structural change of Fe60Cu40 and FegoCu20 with the ball milling time. The XAFS results verify that the solid solution of mechanically alloyed Fe-Cu samples are inhomogeneous. We propose that the bcc to fcc structural transformation of Fe small particles of Fe60Cuq0(160h) is induced by interfacial Cu atoms dissolving in smal...
متن کاملMicrowave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: highly active hydrogenation catalysts.
Noble metal alloys are important in large-scale catalytic processes. Alloying facilitates fine-tuning of catalytic properties via synergistic interactions between metals. It also allows for dilution of scarce and expensive metals using comparatively earth-abundant metals. RhAg and RhAu are classically considered to be immiscible metals. We show here that stable RhM (M = Ag, Au) nanoparticles wi...
متن کامل